Quantcast
Channel: 円周率近似値の日に生まれて理系じゃないわけないだろ! - knifeのblog
Viewing all articles
Browse latest Browse all 5376

a²+b²+c²=d²を満たす一般式はあるのか?

$
0
0

a2+b2+c2=d2 を満たす自然数a,b,c,dの組が無限に存在する。

ならば、何らかの一般式が存在するのではなかろうか。

ピタゴラス数を研究してきた私も、左辺が3項のものは手つかずにいました。

というわけで、プログラミングでローラー作戦をします。

a, b, cを1から100までループでネストして、自然数dが得られれば、それをデータとします。
なお、既約ピタゴラス数にしか興味がないので、gcd(a,b,c,d)=1となるものだけをデータとします。

すると、530組が見つかりました。

530組のデータの特徴をみてみると、
a,b,cのうち、奇数が1個、偶数が2個、dは奇数
という特徴がありました。

a,b,c,dがすべて奇数の可能性もありそうですが、1≦a,b,c≦100においては、a,b,cのいずれか1つが奇数、残り2つが偶数、dが奇数という組しか出てきませんでした。


この証明を考えないとダメですね。
まだまだ思考中です。

というわけで、まだまだ謎は残っていますが、
a,dを奇数、b,cを偶数、b≦cと固定して、(a,b,c,d)の様に空白なしでカンマ区切りで表示することとします。
これで、このページを検索すれば、一般式が存在するのか、存在するならばどのようなパラメータを与えたのかが解るかと思います。

続いて、一般式の可能性の有るものをいくつか揃えると、

【パターン1】
l,m,n∈N
gcd(l,m,n)=1
a=m2+n2-l2
b=2nl
b=2ml
c=m2+n2+l2
として、
b≦cを保つために、m≧n
a≧1を保つために、l2<m2+n2
という条件を付加しました。

【パターン2】
l,m,n∈N
a=(2n-1)(2l-1)
b=(2m)(2l-1)
c=2(m2+n2-l2-n+l)
d=2(m2+n2+l2-n-l)+1
として、
b≦cを保つために、
b=min((2m)(2l-1),2(m2+n2-l2-n+l))
c=max((2m)(2l-1),2(m2+n2-l2-n+l))
のように変更しました。
gcd(l,m,n)=1を条件に加えていません。
なぜなら、
(l,m,n)=(2,2,2)のとき、(a,b,c,d)=(9,8,12,17)を得られます。
gcd(l,m,n)=2ですが、gcd(a,b,c,d)=1となります。

【パターン3】
m,n,p,q∈Z
m,p≧1, n,q≧0
gcd(m,n,o,p)=1
m+n+p+q≡1 (mod 2)
a=(m2+n2)-(p2+q2)
b=2(mp-nq)
c=2(mq+np)
d=(m2+n2)+(p2+q2)
として、
b≦cを保つために、
b=min(2(mp-nq),2(mq+np))
c=max(2(mp-nq),2(mq+np))
のように変更しました。
gcd(m,n,p,q)=1を条件に加えてありますが、
(m,n,p,q)=(1,7,5,0)のとき、(a,b,c,d)=(25,10,70,75)となり、
gcd(a,b,c,d)=5となってしまいます。
しかし、(a,b,c,d)/5=(25,10,70,75)/5=(5,2,14,15)が出ないわけではなく、
(m,n,p,q)=(3,1,1,2)のときに(a,b,c,d)=(5,2,14,15)は得られます。
gcd(m,n,o,p)=1とm+n+o+p≡1 (mod 2)だけでは、完全にgcd(a,b,c,d)=1とすることは出来ていません。
何かしらの条件が解れば追記します。


さて、3つのパターンがありますが、1≦a,b,c≦100というレンジで、どれくらいをカバー出来ているのでしょうか。

表にまとめると、

 

1≦a,b,c≦100
(a,b,c,d)
パターン1
(l,m,n)
パターン2
(l,m,n)
パターン3
(m,n,p,q)
(1,2,2,3)(1,1,1)(1,1,1)(1,1,1,0)
(1,4,8,9)(2,2,1)(1,2,1)(1,2,2,0)
(1,6,18,19)(3,3,1)(1,3,1)(1,3,3,0)
(1,8,32,33)(4,4,1)(1,4,1)(1,4,4,0)
(1,10,50,51)(5,5,1)(1,5,1)(1,5,5,0)
(1,12,12,17)(3,0,2,2)
(1,12,72,73)(6,6,1)(1,6,1)(1,6,6,0)
(1,14,98,99)(7,7,1)(1,7,1)(1,7,7,0)
(1,18,30,35)(3,3,4,1)
(1,22,46,51)(5,1,3,4)
(1,28,76,81)(4,5,6,2)
(1,32,100,105)(7,2,4,6)
(1,34,38,51)(5,1,4,3)
(1,44,68,81)(5,4,6,2)
(1,68,80,105)(7,2,6,4)
(1,70,70,99)(7,5,5)(5,5,7,0)
(3,2,6,7)(1,1,2)(2,1,1,1)
(3,4,12,13)(1,2,2)(2,2,2,1)
(3,6,22,23)(1,3,2)(2,3,3,1)
(3,8,36,37)(1,4,2)(2,4,4,1)
(3,10,54,55)(1,5,2)(2,5,5,1)
(3,12,76,77)(1,6,2)(2,6,6,1)
(3,14,18,23)(2,3,1)(3,2,3,1)
(3,16,24,29)(4,0,2,3)
(3,24,28,37)(2,4,1)(4,2,4,1)
(3,24,56,61)(4,4,5,2)
(3,26,66,71)(6,1,3,5)
(3,30,46,55)(2,5,1)(5,2,5,1)
(3,36,68,77)(2,6,1)(6,2,6,1)
(3,42,94,103)(2,7,1)(7,2,7,1)
(3,46,54,71)(6,1,5,3)
(3,50,90,103)(7,2,5,5)
(3,56,84,101)(7,6,4)(4,6,7,0)
(3,80,96,125)(8,0,5,6)
(3,92,96,133)(8,2,7,4)
(5,2,14,15)(1,1,3)(3,1,1,2)
(5,4,20,21)(1,2,3)(3,2,2,2)
(5,6,30,31)(1,3,3)(3,3,3,2)
(5,8,44,45)(1,4,3)(3,4,4,2)
(5,10,62,63)(1,5,3)(3,5,5,2)
(5,12,84,85)(1,6,3)(3,6,6,2)
(5,38,50,63)(3,5,1)(5,3,5,2)
(5,40,56,69)(6,1,4,4)
(5,48,60,77)(6,5,4)(4,5,6,0)
(5,54,78,95)(7,1,6,3)
(5,70,86,111)(3,7,1)(7,3,7,2)
(7,2,26,27)(1,1,4)(4,1,1,3)
(7,4,4,9)(1,2,2)(2,2,1,0)
(7,4,32,33)(1,2,4)(4,2,2,3)
(7,6,6,11)(3,0,1,1)
(7,6,42,43)(1,3,4)(4,3,3,3)
(7,8,56,57)(1,4,4)(4,4,4,3)
(7,10,74,75)(1,5,4)(4,5,5,3)
(7,12,96,97)(1,6,4)(4,6,6,3)
(7,14,22,27)(4,1,3,1)
(7,16,28,33)(4,2,3,2)
(7,24,60,65)(6,0,2,5)
(7,26,70,75)(4,5,1)(5,4,5,3)
(7,30,30,43)(5,0,3,3)
(7,40,40,57)(5,4,4)(4,4,5,0)
(7,48,84,97)(4,6,1)(6,4,6,3)
(7,74,98,123)(4,7,1)(7,4,7,3)
(9,2,6,11)(1,3,1)(2,1,2)(1,3,1,0)
(9,2,42,43)(1,1,5)(5,1,1,4)
(9,4,48,49)(1,2,5)(5,2,2,4)
(9,6,58,59)(1,3,5)(5,3,3,4)
(9,8,12,17)(2,3,2)(2,2,2)(2,3,2,0)
(9,8,72,73)(1,4,5)(5,4,4,4)
(9,10,90,91)(1,5,5)(5,5,5,4)
(9,12,20,25)(4,1,2,2)
(9,18,38,43)(5,1,4,1)
(9,22,54,59)(5,3,4,3)
(9,24,32,41)(4,4,3)(2,4,2)(3,4,4,0)
(9,28,84,89)(7,0,2,6)
(9,30,50,59)(5,5,3)(2,5,2)(3,5,5,0)
(9,32,36,49)(5,2,4,2)
(9,42,98,107)(7,7,3)(2,7,2)(3,7,7,0)
(9,46,78,91)(7,1,4,5)
(9,62,66,91)(7,1,5,4)
(11,2,10,15)(3,2,1,1)
(11,2,62,63)(1,1,6)(6,1,1,5)
(11,4,68,69)(1,2,6)(6,2,2,5)
(11,6,78,79)(1,3,6)(6,3,3,5)
(11,8,16,21)(4,0,1,2)
(11,8,92,93)(1,4,6)(6,4,4,5)
(11,12,24,29)(3,4,2)(2,4,3,0)
(11,18,42,47)(5,2,3,3)
(11,22,58,63)(6,1,5,1)
(11,28,88,93)(6,4,5,4)
(11,36,48,61)(6,0,3,4)
(11,42,66,79)(6,3,5,3)
(11,44,52,69)(6,2,5,2)
(11,58,94,111)(5,6,7,1)
(11,74,82,111)(6,5,7,1)
(13,2,86,87)(1,1,7)(7,1,1,6)
(13,4,16,21)(2,4,1)(1,4,2,0)
(13,4,92,93)(1,2,7)(7,2,2,6)
(13,6,18,23)(3,3,2,1)
(13,14,34,39)(5,1,2,3)
(13,16,40,45)(4,5,2)(2,5,4,0)
(13,24,72,77)(6,3,4,4)
(13,26,82,87)(7,1,6,1)
(13,50,70,87)(5,5,6,1)
(13,52,76,93)(7,2,6,2)
(13,66,78,103)(7,3,6,3)
(13,76,88,117)(8,1,6,4)
(15,6,10,19)(2,1,3)(4,1,1,1)
(15,12,16,25)(2,2,3)(4,2,2,1)
(15,18,26,35)(2,3,3)(4,3,3,1)
(15,24,40,49)(2,4,3)(4,4,4,1)
(15,30,58,67)(2,5,3)(4,5,5,1)
(15,36,52,65)(6,2,4,3)
(15,36,80,89)(2,6,3)(4,6,6,1)
(15,42,50,67)(3,5,2)(5,4,5,1)
(15,42,70,83)(7,0,3,5)
(15,60,64,89)(3,6,2)(6,4,6,1)
(15,90,94,131)(8,3,7,3)
(17,4,28,33)(4,3,2,2)
(17,6,6,19)(1,3,3)(3,3,1,0)
(17,6,30,35)(3,5,1)(1,5,3,0)
(17,14,46,51)(3,5,4,1)
(17,16,52,57)(6,1,2,4)
(17,20,20,33)(5,0,2,2)
(17,24,84,89)(6,7,2)(2,7,6,0)
(17,26,94,99)(7,3,4,5)
(17,32,44,57)(6,1,4,2)
(17,46,86,99)(7,3,5,4)
(17,56,56,81)(7,0,4,4)
(19,2,34,39)(2,5,3,1)
(19,4,8,21)(1,4,2)(2,4,1,0)
(19,8,40,45)(4,4,3,2)
(19,12,48,53)(6,0,1,4)
(19,18,66,71)(3,6,5,1)
(19,22,26,39)(5,2,3,1)
(19,22,82,87)(7,2,3,5)
(19,30,42,55)(6,1,3,3)
(19,42,54,71)(6,3,5,1)
(19,48,96,109)(8,0,3,6)
(19,58,62,87)(7,2,5,3)
(21,2,42,47)(5,3,2,3)
(21,6,22,31)(2,1,4)(5,1,1,2)
(21,8,48,53)(4,6,1)(1,6,4,0)
(21,12,16,29)(2,4,3)(3,4,2,0)
(21,12,28,37)(2,2,4)(5,2,2,2)
(21,12,56,61)(4,4,2)(4,5,4,2)
(21,14,18,31)(5,1,2,1)
(21,18,38,47)(2,3,4)(5,3,3,2)
(21,18,74,79)(7,1,2,5)
(21,22,90,95)(3,7,6,1)
(21,24,52,61)(2,4,4)(5,4,4,2)
(21,30,70,79)(2,5,4)(5,5,5,2)
(21,36,92,101)(2,6,4)(5,6,6,2)
(21,38,66,79)(7,1,5,2)
(21,40,72,85)(7,2,4,4)
(21,50,78,95)(7,3,6,1)
(21,52,84,101)(4,6,2)(6,5,6,2)
(21,72,100,125)(8,3,6,4)
(21,78,98,127)(4,7,2)(7,5,7,2)
(23,2,14,27)(4,3,1,1)
(23,4,52,57)(2,6,4,1)
(23,6,54,59)(5,4,3,3)
(23,10,10,27)(5,0,1,1)
(23,14,70,75)(7,0,1,5)
(23,16,76,81)(4,6,5,2)
(23,24,24,41)(3,4,4)(4,4,3,0)
(23,24,36,49)(6,0,2,3)
(23,28,44,57)(6,2,4,1)
(23,44,64,81)(6,4,5,2)
(23,64,80,105)(8,0,4,5)
(23,72,84,113)(8,2,6,3)
(23,84,84,121)(7,6,6)(6,6,7,0)
(25,2,10,27)(1,5,1)(3,1,3)(1,5,1,0)
(25,8,20,33)(2,5,2)(3,2,3)(2,5,2,0)
(25,18,30,43)(3,5,3)(3,3,3)(3,5,3,0)
(25,32,40,57)(4,5,4)(3,4,3)(4,5,4,0)
(25,34,62,75)(7,1,3,4)
(25,36,48,65)(6,3,4,2)
(25,44,92,105)(8,1,6,2)
(25,60,72,97)(6,6,5)(3,6,3)(5,6,6,0)
(25,68,76,105)(7,4,6,2)
(25,70,98,123)(7,7,5)(3,7,3)(5,7,7,0)
(27,4,72,77)(6,4,3,4)
(27,6,14,31)(5,2,1,1)
(27,6,38,47)(2,1,5)(6,1,1,3)
(27,6,74,79)(2,7,5,1)
(27,8,24,37)(4,4,2,1)
(27,12,44,53)(2,2,5)(6,2,2,3)
(27,14,90,95)(5,5,2)(5,6,5,3)
(27,16,96,101)(8,0,1,6)
(27,18,34,47)(6,1,3,1)
(27,24,68,77)(2,4,5)(6,4,4,3)
(27,28,36,53)(6,2,3,2)
(27,30,86,95)(2,5,5)(6,5,5,3)
(27,34,66,79)(7,2,5,1)
(27,40,60,77)(5,6,4)(4,6,5,0)
(27,44,96,109)(8,2,4,5)
(27,64,84,109)(8,2,5,4)
(27,88,96,133)(8,4,7,2)
(29,2,26,39)(3,5,2,1)
(29,2,82,87)(3,7,5,2)
(29,8,88,93)(6,5,4,4)
(29,12,96,101)(6,8,1)(1,8,6,0)
(29,14,22,39)(5,3,2,1)
(29,20,28,45)(6,1,2,2)
(29,24,48,61)(4,6,3)(3,6,4,0)
(29,28,56,69)(7,0,2,4)
(29,48,84,101)(6,7,4)(4,7,6,0)
(31,2,94,99)(7,4,3,5)
(31,8,8,33)(1,4,4)(4,4,1,0)
(31,8,100,105)(2,8,6,1)
(31,12,24,41)(6,0,1,2)
(31,12,36,49)(3,6,2)(2,6,3,0)
(31,14,38,51)(4,5,3,1)
(31,22,34,51)(5,4,3,1)
(31,38,86,99)(8,1,3,5)
(31,40,92,105)(8,2,6,1)
(31,42,42,67)(7,0,3,3)
(31,46,82,99)(7,4,5,3)
(31,58,74,99)(8,1,5,3)
(31,90,90,131)(9,0,5,5)
(33,4,24,41)(2,6,1)(1,6,2,0)
(33,4,36,49)(5,4,2,2)
(33,6,10,35)(1,5,3)(3,5,1,0)
(33,6,58,67)(2,1,6)(7,1,1,4)
(33,12,64,73)(2,2,6)(7,2,2,4)
(33,18,74,83)(2,3,6)(7,3,3,4)
(33,22,54,67)(7,1,4,1)
(33,24,88,97)(2,4,6)(7,4,4,4)
(33,30,50,67)(5,5,4,1)
(33,30,70,83)(5,7,3)(3,7,5,0)
(33,38,66,83)(7,3,4,3)
(33,44,48,73)(7,2,4,2)
(33,56,72,97)(8,1,4,4)
(33,68,84,113)(8,3,6,2)
(33,92,96,137)(9,2,6,4)
(35,4,28,45)(6,2,1,2)
(35,6,42,55)(4,3,3)(3,6,3,1)
(35,10,14,39)(3,1,4)(6,1,1,1)
(35,20,56,69)(4,4,3)(4,6,4,1)
(35,30,54,71)(7,2,3,3)
(35,32,80,93)(8,0,2,5)
(35,38,70,87)(4,5,3)(5,6,5,1)
(35,40,44,69)(3,4,4)(6,4,4,1)
(35,50,62,87)(3,5,4)(6,5,5,1)
(35,60,84,109)(3,6,4)(6,6,6,1)
(35,72,96,125)(8,4,6,3)
(35,86,98,135)(4,7,3)(7,6,7,1)
(37,10,50,63)(5,5,3,2)
(37,12,36,53)(6,3,2,2)
(37,16,20,45)(2,5,4)(4,5,2,0)
(37,16,56,69)(4,7,2)(2,7,4,0)
(37,22,46,63)(7,1,2,3)
(37,34,38,63)(7,1,3,2)
(37,36,96,109)(6,8,3)(3,8,6,0)
(37,46,94,111)(5,7,6,1)
(39,2,18,43)(5,4,1,1)
(39,4,12,41)(1,6,2)(2,6,1,0)
(39,6,82,91)(2,1,7)(8,1,1,5)
(39,12,88,97)(2,2,7)(8,2,2,5)
(39,14,42,59)(7,0,1,3)
(39,18,98,107)(2,3,7)(8,3,3,5)
(39,20,48,65)(6,4,3,2)
(39,48,64,89)(8,0,3,4)
(39,52,72,97)(8,2,5,2)
(39,54,62,91)(7,4,5,1)
(39,62,78,107)(8,3,5,3)
(41,6,42,59)(3,7,1)(1,7,3,0)
(41,10,62,75)(3,7,4,1)
(41,12,24,49)(2,6,3)(3,6,2,0)
(41,16,68,81)(5,6,4,2)
(41,28,28,57)(7,0,2,2)
(41,28,64,81)(6,5,4,2)
(41,30,30,59)(3,5,5)(5,5,3,0)
(41,38,50,75)(7,3,4,1)
(41,40,88,105)(8,3,4,4)
(41,62,98,123)(9,1,4,5)
(43,2,46,63)(7,2,1,3)
(43,6,18,47)(6,3,1,1)
(43,6,66,79)(6,5,3,3)
(43,20,80,93)(5,8,2)(2,8,5,0)
(43,24,36,61)(3,6,4)(4,6,3,0)
(43,26,38,63)(7,2,3,1)
(43,32,76,93)(8,2,3,4)
(43,36,84,101)(6,6,5,2)
(43,52,64,93)(8,2,4,3)
(43,64,88,117)(8,4,6,1)
(45,4,72,85)(5,4,3)(4,7,4,2)
(45,10,54,71)(7,3,2,3)
(45,18,26,55)(7,1,2,1)
(45,20,36,61)(3,2,5)(7,2,2,2)
(45,22,90,103)(5,5,3)(5,7,5,2)
(45,24,68,85)(8,1,2,4)
(45,30,46,71)(3,3,5)(7,3,3,2)
(45,40,48,77)(4,6,5)(5,6,4,0)
(45,50,78,103)(3,5,5)(7,5,5,2)
(47,4,32,57)(4,6,2,1)
(47,12,84,97)(6,6,4,3)
(47,14,14,51)(7,0,1,1)
(47,14,86,99)(3,8,5,1)
(47,16,28,57)(6,4,2,1)
(47,16,64,81)(8,0,1,4)
(47,18,66,83)(7,4,3,3)
(47,42,54,83)(8,1,3,3)
(47,46,74,99)(8,3,5,1)
(47,54,90,115)(9,0,3,5)
(47,60,60,97)(5,6,6)(6,6,5,0)
(49,2,14,51)(1,7,1)(4,1,4)(1,7,1,0)
(49,2,86,99)(7,5,3,4)
(49,8,28,57)(2,7,2)(4,2,4)(2,7,2,0)
(49,8,64,81)(4,8,1)(1,8,4,0)
(49,10,10,51)(1,5,5)(5,5,1,0)
(49,18,42,67)(3,7,3)(4,3,4)(3,7,3,0)
(49,26,82,99)(7,5,4,3)
(49,32,56,81)(4,7,4)(4,4,4)(4,7,4,0)
(49,50,70,99)(5,7,5)(4,5,4)(5,7,5,0)
(49,72,72,113)(9,0,4,4)
(49,72,84,121)(6,7,6)(4,6,4)(6,7,6,0)
(49,76,92,129)(8,5,6,2)
(51,8,12,53)(1,6,4)(4,6,1,0)
(51,8,96,109)(4,8,5,2)
(51,10,18,55)(7,2,1,1)
(51,18,46,71)(5,6,3,1)
(51,26,42,71)(6,5,3,1)
(51,32,48,77)(8,0,2,3)
(51,32,60,85)(8,2,4,1)
(51,64,72,109)(8,4,5,2)
(51,74,78,119)(9,2,5,3)
(53,2,34,63)(7,3,1,2)
(53,4,44,69)(6,5,2,2)
(53,8,76,93)(8,3,2,4)
(53,22,26,63)(7,3,2,1)
(53,26,94,111)(9,1,2,5)
(53,46,86,111)(9,1,5,2)
(53,52,56,93)(8,3,4,2)
(53,56,88,117)(9,2,4,4)
(53,60,96,125)(6,8,5)(5,8,6,0)
(55,16,88,105)(8,4,3,4)
(55,18,90,107)(9,0,1,5)
(55,20,56,81)(3,2,6)(8,2,2,3)
(55,22,46,75)(8,1,3,1)
(55,30,66,91)(3,3,6)(8,3,3,3)
(55,34,38,75)(7,4,3,1)
(55,36,60,89)(6,6,4,1)
(55,40,44,81)(8,2,3,2)
(55,50,98,123)(3,5,6)(8,5,5,3)
(57,6,14,59)(1,7,3)(3,7,1,0)
(57,10,90,107)(5,9,1)(1,9,5,0)
(57,12,44,73)(7,4,2,2)
(57,20,24,65)(2,6,5)(5,6,2,0)
(57,24,64,89)(4,8,3)(3,8,4,0)
(57,26,66,91)(5,7,4,1)
(57,28,36,73)(8,1,2,2)
(57,46,54,91)(7,5,4,1)
(57,46,78,107)(9,1,3,4)
(57,62,66,107)(9,1,4,3)
(57,84,92,137)(9,4,6,2)
(59,2,22,63)(6,5,1,1)
(59,2,94,111)(2,9,5,1)
(59,12,48,77)(3,8,2)(2,8,3,0)
(59,12,60,85)(6,6,3,2)
(59,16,32,69)(8,0,1,2)
(59,38,86,111)(9,2,5,1)
(59,46,82,111)(6,7,5,1)
(59,58,74,111)(7,6,5,1)
(59,80,100,141)(10,0,4,5)
(61,2,62,87)(5,7,3,2)
(61,4,32,69)(2,8,1)(1,8,2,0)
(61,16,28,69)(2,7,4)(4,7,2,0)
(61,22,58,87)(7,5,3,2)
(61,36,72,101)(9,0,2,4)
(61,66,78,119)(9,3,5,2)
(61,70,98,135)(7,7,6,1)
(63,2,54,83)(5,3,4)(3,8,3,1)
(63,6,22,67)(7,4,1,1)
(63,8,36,73)(8,2,1,2)
(63,14,18,67)(4,1,5)(8,1,1,1)
(63,16,72,97)(5,4,4)(4,8,4,1)
(63,24,28,73)(4,2,5)(8,2,2,1)
(63,34,42,83)(4,3,5)(8,3,3,1)
(63,34,90,115)(5,5,4)(5,8,5,1)
(63,48,56,97)(4,4,5)(8,4,4,1)
(63,66,70,115)(4,5,5)(8,5,5,1)
(63,66,94,131)(9,4,5,3)
(63,84,88,137)(4,6,5)(8,6,6,1)
(63,84,100,145)(10,2,5,4)
(65,10,74,99)(3,1,7)(9,1,1,4)
(65,20,44,81)(8,3,2,2)
(65,26,70,99)(9,1,4,1)
(65,30,42,83)(3,7,5)(5,7,3,0)
(65,32,76,105)(7,6,4,2)
(65,52,64,105)(9,2,4,2)
(65,54,78,115)(9,3,4,3)
(67,4,16,69)(1,8,2)(2,8,1,0)
(67,6,78,103)(7,6,3,3)
(67,8,64,93)(8,4,2,3)
(67,12,36,77)(6,6,2,1)
(67,32,56,93)(8,4,3,2)
(67,42,66,103)(9,2,3,3)
(67,70,94,135)(10,1,5,3)
(69,6,38,79)(5,7,2,1)
(69,8,84,109)(5,8,4,2)
(69,12,32,77)(2,8,3)(3,8,2,0)
(69,16,72,101)(4,9,2)(2,9,4,0)
(69,18,34,79)(7,5,2,1)
(69,30,58,95)(9,1,2,3)
(69,42,50,95)(9,1,3,2)
(69,42,98,127)(7,7,5,2)
(69,44,72,109)(8,5,4,2)
(69,48,56,101)(4,7,6)(6,7,4,0)
(69,72,88,133)(10,1,4,4)
(69,78,98,143)(9,5,6,1)
(71,10,22,75)(8,3,1,1)
(71,12,12,73)(1,6,6)(6,6,1,0)
(71,18,54,91)(9,0,1,3)
(71,18,78,107)(8,5,3,3)
(71,22,98,123)(4,9,5,1)
(71,24,48,89)(3,8,4)(4,8,3,0)
(71,40,100,129)(10,0,2,5)
(71,56,92,129)(8,6,5,2)
(71,58,82,123)(9,4,5,1)
(73,6,54,91)(3,9,1)(1,9,3,0)
(73,6,78,107)(3,9,4,1)
(73,10,14,75)(1,7,5)(5,7,1,0)
(73,14,98,123)(7,7,4,3)
(73,36,36,89)(9,0,2,2)
(73,40,64,105)(4,8,5)(5,8,4,0)
(73,42,66,107)(9,3,4,1)
(73,70,70,123)(5,7,7)(7,7,5,0)
(75,6,58,95)(9,2,1,3)
(75,22,54,95)(6,7,3,1)
(75,24,32,85)(8,4,2,1)
(75,28,96,125)(8,6,4,3)
(75,30,98,127)(10,1,5,1)
(75,60,92,133)(10,2,5,2)
(75,82,90,143)(10,3,5,3)
(77,4,52,93)(7,6,2,2)
(77,4,88,117)(9,4,2,4)
(77,14,38,87)(4,1,6)(9,1,1,2)
(77,18,66,103)(9,3,2,3)
(77,22,34,87)(9,1,2,1)
(77,28,44,93)(4,2,6)(9,2,2,2)
(77,42,54,103)(4,3,6)(9,3,3,2)
(77,56,68,117)(4,4,6)(9,4,4,2)
(77,70,86,135)(4,5,6)(9,5,5,2)
(77,84,96,149)(6,8,7)(7,8,6,0)
(79,8,16,81)(1,8,4)(4,8,1,0)
(79,14,58,99)(5,8,3,1)
(79,18,18,83)(9,0,1,1)
(79,20,100,129)(5,10,2)(2,10,5,0)
(79,30,78,115)(9,4,3,3)
(79,38,46,99)(8,5,3,1)
(79,44,92,129)(10,2,3,4)
(79,68,76,129)(10,2,4,3)
(81,2,18,83)(1,9,1)(5,1,5)(1,9,1,0)
(81,8,36,89)(2,9,2)(5,2,5)(2,9,2,0)
(81,12,52,97)(8,5,2,2)
(81,24,28,89)(2,7,6)(6,7,2,0)
(81,32,72,113)(4,9,4)(5,4,5)(4,9,4,0)
(81,32,84,121)(10,1,2,4)
(81,42,70,115)(7,7,4,1)
(81,42,94,131)(9,5,4,3)
(81,48,76,121)(10,1,4,2)
(81,50,90,131)(5,9,5)(5,5,5)(5,9,5,0)
(83,2,26,87)(7,6,1,1)
(83,14,22,87)(9,2,1,1)
(83,20,80,117)(10,0,1,4)
(83,32,76,117)(6,8,4,1)
(83,50,94,135)(10,3,5,1)
(83,52,64,117)(8,6,4,1)
(83,54,66,119)(10,1,3,3)
(85,6,42,95)(9,3,1,2)
(85,8,80,117)(4,10,1)(1,10,4,0)
(85,14,70,111)(7,7,3,2)
(85,20,32,93)(2,8,5)(5,8,2,0)
(87,4,72,113)(6,8,3,2)
(87,4,84,121)(10,2,1,4)
(87,6,26,91)(8,5,1,1)
(87,6,62,107)(4,9,3,1)
(87,24,68,113)(8,6,3,2)
(87,36,76,121)(10,2,4,1)
(87,40,60,113)(10,0,2,3)
(87,42,46,107)(9,4,3,1)
(87,54,94,139)(7,8,5,1)
(87,66,86,139)(8,7,5,1)
(87,80,84,145)(10,4,5,2)
(89,6,18,91)(1,9,3)(3,9,1,0)
(89,16,92,129)(10,3,2,4)
(89,20,52,105)(9,4,2,2)
(89,22,82,123)(5,9,4,1)
(89,42,42,107)(3,7,7)(7,7,3,0)
(89,58,62,123)(9,5,4,1)
(89,64,68,129)(10,3,4,2)
(89,88,88,153)(11,0,4,4)
(91,14,62,111)(4,1,7)(10,1,1,3)
(91,26,58,111)(10,1,3,1)
(91,28,68,117)(4,2,7)(10,2,2,3)
(91,36,48,109)(3,8,6)(6,8,3,0)
(91,40,100,141)(5,10,4)(4,10,5,0)
(91,42,78,127)(4,3,7)(10,3,3,3)
(91,56,92,141)(4,4,7)(10,4,4,3)
(91,86,98,159)(11,2,5,3)
(93,6,74,119)(9,5,2,3)
(93,14,42,103)(7,7,2,1)
(93,16,36,101)(2,9,4)(4,9,2,0)
(93,24,80,125)(4,10,3)(3,10,4,0)
(93,24,92,133)(7,8,4,2)
(93,34,66,119)(9,5,3,2)
(93,36,44,109)(10,1,2,2)
(93,36,88,133)(8,7,4,2)
(95,6,90,131)(8,7,3,3)
(95,8,44,105)(6,8,2,1)
(95,10,26,99)(9,4,1,1)
(95,12,60,113)(3,10,2)(2,10,3,0)
(97,4,40,105)(2,10,1)(1,10,2,0)
(97,12,96,137)(6,9,4,2)
(97,14,14,99)(1,7,7)(7,7,1,0)
(97,30,54,115)(3,9,5)(5,9,3,0)
(97,48,84,137)(9,6,4,2)
(97,56,64,129)(4,8,7)(7,8,4,0)
(97,58,94,147)(11,1,3,4)
(97,74,82,147)(11,1,4,3)
(99,2,66,119)(10,3,1,3)
(99,12,16,101)(1,8,6)(6,8,1,0)
(99,12,44,109)(10,2,1,2)
(99,12,88,133)(6,4,5)(4,10,4,1)
(99,18,22,103)(5,1,6)(10,1,1,1)
(99,28,36,109)(5,2,6)(10,2,2,1)
(99,38,54,119)(5,3,6)(10,3,3,1)
(99,52,72,133)(5,4,6)(10,4,4,1)
(99,70,90,151)(5,5,6)(10,5,5,1)
530個104/530
19.6226%
137/530
25.8491%
530/530
100%


パターン3は優秀でした。
パターン3でも、nやqに0を許さず、m,n,p,q∈Nとしてしまうと
383/530で72.2642%となってしまいます。


ではでは


Viewing all articles
Browse latest Browse all 5376

Trending Articles