Quantcast
Channel: 円周率近似値の日に生まれて理系じゃないわけないだろ! - knifeのblog
Viewing all articles
Browse latest Browse all 5376

三角関数 -5度系まとめ-

$
0
0

やっと、昔の記事を改修できます。

簡略化のため、1の3乗根を示すωを、
 

ω1 =
-1+-3
2
ω2 =
-1--3
2
ω3 = 1


のようにします。

 

cos(0˚)=
sin(90˚)=
+1
cos(5˚)=
cos(355˚)=
sin(95˚)=
sin(85˚)=
+
ω36+2+2-2+336+2-2-2+3
32
cos(10˚)=
cos(350˚)=
sin(100˚)=
sin(80˚)=
+
ω33+-133--1
16
cos(15˚)=
cos(345˚)=
sin(105˚)=
sin(75˚)=
+
6+2
4
cos(20˚)=
cos(340˚)=
sin(110˚)=
sin(70˚)=
+
ω31+-331--3
16
cos(25˚)=
cos(335˚)=
sin(115˚)=
sin(65˚)=
+
ω36-2+2-2-336-2-2-2-3
32
cos(30˚)=
cos(330˚)=
sin(120˚)=
sin(60˚)=
+
3
2
cos(35˚)=
cos(325˚)=
sin(125˚)=
sin(55˚)=
+
ω3-6+2+2-2-33-6+2-2-2-3
32
cos(40˚)=
cos(320˚)=
sin(130˚)=
sin(50˚)=
+
ω3-1+-33-1--3
16
cos(45˚)=
cos(315˚)=
sin(135˚)=
sin(45˚)=
+
2
2
cos(50˚)=
cos(310˚)=
sin(140˚)=
sin(40˚)=
+
ω3-3+-13-3--1
16
cos(55˚)=
cos(305˚)=
sin(145˚)=
sin(35˚)=
+
ω3-6-2+2+-2+33-6-2-2+-2+3
32
cos(60˚)=
cos(300˚)=
sin(150˚)=
sin(30˚)=
+
1
2
cos(65˚)=
cos(295˚)=
sin(155˚)=
sin(25˚)=
+
ω2-6-2+2-2+31-6-2-2-2+3
32
cos(70˚)=
cos(290˚)=
sin(160˚)=
sin(20˚)=
+
ω2-3+-11-3--1
16
cos(75˚)=
cos(285˚)=
sin(165˚)=
sin(15˚)=
+
6-2
4
cos(80˚)=
cos(280˚)=
sin(170˚)=
sin(10˚)=
+
ω2-1+-31-1--3
16
cos(85˚)=
cos(275˚)=
sin(175˚)=
sin(5˚)=
+
ω2-6+2+2-2-31-6+2-2-2-3
32
cos(90˚)=
sin(0˚)=
±0
cos(95˚)=
cos(265˚)=
sin(185˚)=
sin(355˚)=
-
ω2-6+2+2-2-31-6+2-2-2-3
32
cos(100˚)=
cos(260˚)=
sin(190˚)=
sin(350˚)=
-
ω2-1+-31-1--3
16
cos(105˚)=
cos(255˚)=
sin(195˚)=
sin(345˚)=
-
6-2
4
cos(110˚)=
cos(250˚)=
sin(200˚)=
sin(340˚)=
-
ω2-3+-11-3--1
16
cos(115˚)=
cos(245˚)=
sin(205˚)=
sin(335˚)=
-
ω2-6-2+2-2+31-6-2-2-2+3
32
cos(120˚)=
cos(240˚)=
sin(210˚)=
sin(330˚)=
-
1
2
cos(125˚)=
cos(235˚)=
sin(215˚)=
sin(325˚)=
-
ω3-6-2+2+-2+33-6-2-2+-2+3
32
cos(130˚)=
cos(230˚)=
sin(220˚)=
sin(320˚)=
-
ω3-3+-13-3--1
16
cos(135˚)=
cos(225˚)=
sin(225˚)=
sin(315˚)=
-
2
2
cos(140˚)=
cos(220˚)=
sin(230˚)=
sin(310˚)=
-
ω3-1+-33-1--3
16
cos(145˚)=
cos(215˚)=
sin(235˚)=
sin(305˚)=
-
ω3-6+2+2-2-33-6+2-2-2-3
32
cos(150˚)=
cos(210˚)=
sin(240˚)=
sin(300˚)=
-
3
2
cos(155˚)=
cos(205˚)=
sin(245˚)=
sin(295˚)=
-
ω36-2+2-2-336-2-2-2-3
32
cos(160˚)=
cos(200˚)=
sin(250˚)=
sin(290˚)=
-
ω31+-331--3
16
cos(165˚)=
cos(195˚)=
sin(255˚)=
sin(285˚)=
-
6+2
4
cos(170˚)=
cos(190˚)=
sin(260˚)=
sin(280˚)=
-
ω33+-133--1
16
cos(175˚)=
cos(185˚)=
sin(265˚)=
sin(275˚)=
-
ω36+2+2-2+336+2-2-2+3
32
cos(180˚)=
sin(270˚)=
-1


この表に至るまでの簡単な経緯

3倍角の公式
sin(3θ) = 3sin(θ) - 4sin3(θ)
cos(3θ) = 4cos3(θ) - 3cos(θ)

チェビシェフの多項式
T3(x) = 4x3 - 3x

どちらでも良いのですが、

例えば、
cos(3θ) = cos(60˚) = 1/2
cos(θ) = cos(20˚) = x
1/2 = 4x3 - 3x
4x3 - 3x - 1/2 = 0
8x3 - 6x - 1 = 0
計算するといっても、3次方程式なので、カルダノの解法を使う。
これによって、x = cos(20˚) が求まる。
同様の方法で、
cos(3θ) = cos(15˚) ==> cos(5˚)
cos(3θ) = cos(30˚) ==> cos(10˚)
cos(3θ) = cos(75˚) ==> cos(25˚)

と進めれば、5度系がすべて埋まる。


ではでは


Viewing all articles
Browse latest Browse all 5376

Trending Articles